An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images
نویسندگان
چکیده
This paper presents an integrated method of the adaptive enhancement for an unsupervised global-to-local segmentation of brain tissues in three-dimensional (3-D) MRI (Magnetic Resonance Imaging) images. Three brain tissues are of interest: CSF (CerebroSpinal Fluid), GM (Gray Matter), WM (White Matter). Firstly, we de-noise the images using a newly proposed versatile wavelet-based filter, and segment the images with minimum error global thresholding. Subsequently, we combine a spatial-feature-based FCM (Fuzzy C-Means) clustering with 3-D clustering-resultweighted median and average filters, so as to further achieve a locally adaptive enhancement and segmentation. This integrated strategy yields a robust and accurate segmentation, particularly in noisy images. The performance of the proposed method is validated by four indices on MRI brain phantom images and on real MRI images. 2003 Elsevier B.V. All rights reserved.
منابع مشابه
A novel method for adaptive enhancement and unsupervised segmentation of MRI brain image
This paper describes a novel global-to-local method for the adaptive enhancement and unsupervised segmentation of brain tissues in MRI (Magnetic Resonance Imaging) images. Three brain tissues are of interest: CSF (CerebroSpinal Fluid), GM (Gray Matter), WM (White Matter). Firstly, we de-noise the image using wavelet thresholding, and segment the image with minimum error thresholding. Both the t...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 24 شماره
صفحات -
تاریخ انتشار 2003